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It is shown that the problem of unsteady flow of a supersonic gas stream past a 
slender profile has, under certain conditions, an irregular expansion in the ne- 
ighborhood of the bow shock wave. A nonlinear equation which defines the 
flow in the irregularity region is obtained, and the linear and nonlinear expan- 
sions are matched. Equations of general form are derived for the flow in the 
neighborhood of weak shock waves which in the linear theory coincide with 
characteristics. 

1. We consider in linear formulation the class of problems of supersonic flow in 
which the weakly perturbed flow region is separated from that of uniform flow by the 
surface 5 = x - f3y = 0 (/3 = (Ma - l)‘l:, M F Ua-I; M and a are, res- 
pectively, the Mach number and the speed of sound in the uniform stream. Such flows 
occur, for instance, in supersonic fIows past an unsteady point source of small perturb- 
ations, in the supersonic flow around a pointed slender profile, or some insignificant 
convexity on a plane or cylindrical surface (see, e. g., [l-5] dealing with unsteady 
supersonic flows and provide surveys of there problems). 

We specify the linear expansion of the velocity potential in the form 

@ (x, Y, r) = ux + 6% (Et Y, t) + 6*cpz 6 Y, t) + *** (1.1) 

E= 5 - SY 

where 0, z, y, and i! are respectively, the dimensionless velocity potential, the 
coordinates, and time, normalized with respect to a,*&,, a,t,, and t,, where 

a, is the speed of sound in the sonic stream, 
Conditions of the problem are assumed to be such that in the neighborhood of the 

perturbed region boundary E = 0 the potential ‘pl is of the form 

c~~-E:y,t)~~ln~~+T(y,t)g(~)+..., g(E)<En‘lllnE (1.2) 

The values of m and n must be such that ‘pr (E = 0) = 0. For E (Y, t) 
from the linear equation for (~1 we then have 

2UEt -j- a?j3 (2E, + $ E) = 0, B = E,(q)p/2, q = y - 3 t (1.3) 

where E, (q) is an arbitrary function, and o = 0 and w = 1 for plane and 
axisymmetric flows, respectively. 

Expansion (1.2) corresponds, for example, to flow over a surface *for which in 
the linear theory for small x (at the profile nose x = y = 0) is defined by 

y = 6y,(z, t) = 6 h (t) xm In” 2 + hr (t) g (x) + . . . (1.4) 

31. 
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The external flow past a cylindrical surface y = y* + by, (5, t), y* = con& 
$5 0 may be considered as an example of axfsymmetric flows. In that case the vari- 

able E is to be specified in the form 5 = 5 - p (y - y*). It follows from (1.4) that 
the profile is pointed when m = i, n < 0 9 or m > 1. These values are used be- 
low, It follows from (1.2) that when m = 1 and n = 0 (the angle cc between the 
tangent to the profile and the x -axis at 2 = 0 is nonzero). then in linear formulat- 
ion %=0 theshockwaveintensityis AP-6: when m=land n<O ,OI 
m > 1 (a = 0), the potential and velocities at % = 0 are continuous and % = 0 
is a characteristic that reprtrent the surface of weak discontinuity. 

Note that for certain m, n, and g (E;) we have cplt;r, (% = 0) = 00. If on the 
characteristic f = 0 we have at = Uz, thtn the exact equation of the potential 

@ (%, y , t) yields for the determination of z (y , t) = 05~ (% = 0) the nonlinear 
equation 

2U74 + a8B (& + +z f(XfI)UMPZ2=0 ) (1.5) 

It follows from (1.5) that CD (5 = 0) = Ux + z E2 and that the acceleration 
Q&E (f = 0) it either a quantity of order unity (z = z (#, t) # 0) or is equalzero 

(2 = 0). However the linear theory does not provide the posdbility of satisfying the 
condition ‘of finiteness of acceleration (in the linear theory @DEE = &to - 6 < 1) 
and this is the cause of VI&E (% = 0) becoming co in such cases. The linear theory 
assumes acceleration U+c to be small and deffner cplgf (f = 0) by the linear equat- 
ion (1.5) without the last term. Similar investigations were carried art in IS] for con- 
ical steady flow& 

The two-term linear expansion (external in [7 -9D in the neighborhood of % t 0 
for m > 1 or m = 1 and n < 0 (a = 0). L of the form 

CD = Liz + 6 [& (q) y--@12Ern In” E + . . . I + 
(1.6) 

62 {[El (q) _ q /3,2 (~1) y(2-0) 19 y-Q’h3m-2 lnan F; + . . .} 

_ p = (x + 1) &P (2 - 0)-l (t&-l 

where j-+0, yand t- 1, and values of M are finite and not close to unity. 
Form-land n = O(a # 0) we have 

@ = ux + 8 [E, (q) y-o’2 % + . ..I + b2 {[Y% + y g’ (%)I +...} (1.7) 

where El (T$ is an arbitrary function; Y (Y, t) and y (y, t) are some functio!u of 
variables y and t. In (1.7) the term containing Y is to be discarded when E” < 

g < E; when g < Ez the term containing y is to be eliminated, and when g 
N gz both term are to be retrained. Expansion& (1.6) and (1.7) are irregular when 
6Em-21n*% - 1 (if la = 0 then for E N Ws-9 and for %8 < g < %, % - 

6g’ (%), respectively. Specifically, irregubdty occurs for these m, n, and g (E) 
for which %~a (& = 0) = 00. 

We have the irregularity of linear expansion in the neighborhood of shock waves 
(&aracter&ticrr) where values of parameters are small but their gradients are finite 
[6 - 143. 

2. We specify the expansion (internal in [7 -93 that defines the flow in the 
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neighborhood of a shock wave (characteristic) by 

@ = ux + es+ (E”, y, t) +..., E = eE”, 13 < 1 (2.1) 
Assuming that y and t - 1, and I<M<oo, weobtainforq theequation 

2Wt.l$_ o”fi (WW + $- $E”) + (x + 1) UMs$&.EO = 0 (2.2) 

which for the determination of a,, (& = 0) yields exactly Eq. (1.5) with @~a - 1. 
Equation (2.2) was considered in [‘7] for stable plane flows. 

At the shock front the conditions are of the form 

(2.3) 

9 = ** for 5” = P(Y, t) 

where I$* relates to the flow ahead of the shock wave, and when $* s 9, (2.3) is 
the characteristic equation. 

The impenetrability condition along the profile p = s2y0 (5, t) for o = 0 is 
of the form U@,, / d E” = --(3\pr at y = 0. For w = 1 the profile is to be 
specified in the form y = y* + 19 y,, y* = con& # 0. 

The general solution of Eq. (2.2) 

% = pu”y + f (u0y@‘2, q, u” = l&o, a.+ = u + eu” (2.4) 

Along the characteristics of Eq. (2.2) the relation 

(2.5) 

where u” = u0 (y, t) , is the value of u” on the characterfstic and p = u~J/~“~*, 
is valid. Then along the characteristic E” = pu, (q)y”-“)/2 f f ho (q), ?I] vel- 
ocity u” is determined by (1.3) and u” = u. (q)y*” (u. (11) is determined by 
the condition at the profile). Equation py + (af / @)yO/2 = 0 in conjunction 
with (2.4) determines the envelope of the indicated set of characteristics, as well as 
that of the set of curves (2.4), where no is a parameter which is constant along each 
of these curves. Note that equation r~ = 0 determines the coordinate of the inter- 
section point of the straight ltne E = 0 with the bamdary of the sound momentum 

(x - Ut)2 ,+ y” = aat2. 

3. Passing in the linear equation for cpl to the internal variable f” and in Eq. 
(2.2) to the external variable E, we obtain for E + 0 the same limit equation, 
which indicates the possibility of joining expansions (1.1) and (1.2). Let us amend 
the linear theory in the neighborhood of % I 0 with 01 = 0 (see (1.6)) and n = 0. 
In this case 1 ( m < 2, since the irregularity region j - 6u(2-m) < 1 (it is 
interesting that when %” + 00 , solution of (2.2) of the form (1.2) exists only when 
m<2or m= 2 and n < 0). Joining the one-term expansions (1.6), (2.1). 
and (2.4),’ we obtain E = 6u(s-m) and F-r = U”m-lEo-lyols. Let us consider the 
particular case in which f is a second power polynomial in powers of u” 

+=A(E“+BB)lit+CP+D, Cy@12=C; _ + p_.Qy(“-W” (3.1) 

A = Aoy-wf2, B = B0 - pC0y(“-o)12 + .& p2A02y’-~ 
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where D tY, r)t Aa (?)v PII (?)v and C, (11) are arbitrary funcKons. 
‘%t (E; = 0) = 3/,PB-“‘. 

For (3.1) 

E,,,and Co = 
Joining with (1.6) yieIds t: = &2, m = V2, Aa = 

El. me co~tiot~ of impenetrability implies that the equation of 
the profile for (3.1) for small 2 is of the form (0 = 0) 

uf’y = - vr&, (t*)~‘/~ - ec,, (t*) r - 3/2e fIA,,W +. . , a@jf’lt = _ t” 

Using CL131 it can be easily shown that soWion (3.1) is suitable for defining the 
ilow in which the perturbed region Is bounded upstream by the character&Kc E” = 
41SC,,2A,,-2 - Bo (co = 0, 1) along which it is not d&sconKnuous, or by the shock wave 

If the characterisKc (shock wave) passes through point t = y z 0, then B, = 
4/&oaAo-a (Bo = ‘l&~2Ao-2) ,and its intensity is 

$. ~-cxtlt / (x-1) = -e$go((E;“=E*)=e 
( g pA+i2y’-0 - +C()y~/s) 

If the shock wave originates at the profik no&e, then Co < 0 (otherWe A,P (y 
= 0) < 0). If co = 0, the hock wave intensity at y = 0 (0 = 0) is sero. 

The compression shock at the profile is obtained for o = 1 by setting in the express- 
ion for AP y = y* #.O. 

In Linear formulation the shock wave intensity AP - 6. In the considered part- 
icuIar cases AP - e = 61/(a-m) < 6 (1 < m < 2) for n = 0. Hence in such 
formulaKon the shock wave of such weak intensity degenerates into a charactersitic, 
i. e., a surface of weak discontinuity. 

A similar investigation of the ploae problem of steady supersonic flow past a prof- 
ile for a = n = 0 was carried out in [143. 

4. In conformity with Cl33 Eq. (2.2) can be extended to the case of a viseousheat 
conducting gas. Specifying P = P,,, p = po, Pr = Pro, and Re = Rew2 for 
the uniform ilou of perfect gas we obtain equation 

G (4) = hw~ I = Ma ( Reopo)‘W [ 1 + (x - 1) Pro-l1 (4.1) 

where G (\p) represents the left-hand side of Es. (2.2). SubstituKng in it 

this equation reduces for o = 0 to a linear one. The so~uution 

uO=r(h)- +--r (V th [s(h) % - PY (A) s (A) + so &)I 
(4.2) 

x = 2Uq, b = (x + 1)UW 
for (4.1) of the form derived in [lS] defines thestructure of a pLans shock wave. In 

this eqctatioa r, s, and so are arbitrary fhnetions. ScIecKng for s 2 0 r = T2Z 
b-lswefindthat no-+0 when F-t-00 andu”+2r(h)<Owh~~+-t. 

Joining (2.1) and (4.2) with (1.7) we obtain 6 = e and E, (9) = 2r (h). 
Forr+--t asymptoKcsof(4.1)isoftheform(1.2), if n&(2 or m-2 

and n < 0 (for m < 2 or m = 2 and n < 0 function E is determined, as in 
the case of (2.21, by (l.3)). This show the possibility of joining expansion (2.1) with 
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(1.6) in the case of a viscous gas. 
The solution of (2.2). (4.1) 

$ = &% (?I, t) (9” 

can be used for determining perfect gas flows with a shock wave or a weak discontinu- 
ity. 

All above results are valid for the trailing edge shock wave which is followed by 
a uniform flow. In this case it is necessary to substitute in (1.2) (L - E) (L is the 
chord length of the profile whose end point is at y = 0, z = L) for E , and in 
formulas in Sects.Z-4 take E” to mean the variable E” = (I, - E)e-‘. All 
formulas, including those for viscous gas, remain unaltered, 

5. Let us derive the nonlinear equation of a general form for defining the flow in 
the neighborhood of weak shock waves which in the linear theory coincide with charac- 
teristics. We introduce in the exact equation for 0 (2, y, t) new variables E, q, 
and 0 which depend on 5, y, and t, and seek a solution of the obtained equation 
for flows that differ only slightly from a uniformstream of the form ( R is an arbitrary 
function> 

CD = Uz + E~$ (E”, q, B)R (2, y, t) +. . ., E = C', e < 1 (5.1) 

Let us assume that after passing to variables E, 11, end 6 all coefficients in the 
equation for Q, expressed in terms of variables to, 11, and 8 are of order unity (this 
obtains, for example, for variables E = z.+ - fi (zs, zs), q = f2 (zs, zs), and 

0 = fs (x29 x2)). Retaining leading terms we obttin 

2K,$,,., + 2K;&, + 9:o (LEG + 2R,-‘K;J - (5.2) 

(x + 1) R&fgY+” q60E” = 0 

where the small circle in the subscript denotes leading terms of expansions of functions 
%, NE, KEY, Kge, KER, J& and R in E, where 

ME = (L2 3 Ev2) (Et + &), LE = a2 ( &,, -!- Evv + + ?I/) - 

E tt - 2QaTt - U2Lx 

KDI = a2 631x + &A,) - (Et + Ed ht + uqx) 

The nontriviality condition 

NE -1 a2 (Ex2 + 5,“) - (Et + UEs)s = 0 (5.3) 

must then be satisfied. In these formulas Kke and KER are obtained by the substit- 
ution in the expression for K, of functions 8 and R , respectively, for function 

11 ; LE is obtained by substituting in the equation for function cp1 E for function 

91 l 
The subscripts at M, K, L, and N are markers, while in the remaining casizs 

the letter subscript indicates a derivative. Function R can be used for simplifying 
(5.2). Equation (5.3) for function E (2, y, t) implies that E = con& is a charact- 
eristic line (surface) of the linear equation for cpl (Lq = 0). Functions 9 and 8 
are arbitrary and can be selected so as to facilitate the solution of the problem (provid- 
ed the condition for the order of coefficients is satisfied). 
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CodlditSoa (5.3) may be wideued. To obtain a noutrivial equation for \I, it is 
sufficient to specify that functiou 5 (2, y, t) determined by the equation NE = F 

(%, X, g, t), ia which functton p is such that 

F [@‘I x (eE”s rl, e), Y (G’, rl, e), t M=, r\, @)I = eF,,(E 7, ‘9 
Le. that Ng - e but all remain&g cdtimts in the equatb for dt, are of order 
uaity. Then the equation for Jo assumes the form F&pse + G ($) = 0 in which 
G (9) is the left-bond side of Ee. (5.2). 

The approximate cotxditious for (5,2) at tk shock wave P = Fp (q, 9) are of 
theform 

IfR =$,g=s-&g=y,aud 0--t, thenfrom(5.2)and(5.4) we 
obtain f2,2) and (2,3). 6ettUg 

R = 1, $+= rj-(aV--ye)“*, TJ = y, 0 =t, U =5 0, aa =(x4-1)/2 

we~~~~w~~~~~~~~ of the sumid pute 
(or of a weak shock wave) f =5: 0 propagaw tsnmgh the cplfc#xnt or s&@tly pertur- 
bed gas. It can be shown that in problems of propagation of a samd pllre or a weak 
shock wave a Uear exw of the form (1,6) for g = 5 f (# - ~80)‘” also has 
rq#cms of ~~. For instance, for B = 0 it ia irregt& uher~ f - @~++ , 
= < 2. Rqresent&ig the general sohlfion of (5.2) in the form F;” = p (r.J”, y, t) 

it is posiblt to join the linear and nonUnear expandon@. For plane self-similar fl@ws 
oftheform a, = 8UJ* (g / t, y / t) we have m = V9 (n = 0). Equation (5.21 for 

E -s&(&P-$)‘!*, q==y,wd 8 = t is au analog of tit equation for a per- 
fect gas [13] that is obtained from (5.2) for 

5 = at - Q*, q - x = p* co9 e,, 8 = y = p* sin 8, 
R==1, U=O 

it is also an aualog of the equation in [lOI, differing from these only by the form of 
Variables. 

We introduce now the expansion 

CI, = uz -f- 8V (P, $, 0)fi (2, y, t) -I- * . 0, % = er 
41, = J&f, e < 1 

*ag th+ pti~~ ~QIIdftiont for the coefficients in the equation for @, we 
obtain Eq, (5.2) and c~nditi~ (5.4) ia whfch it L necWry to @ib&Wte 

for their respective f&t terms. 

fig = ei’V~~ (E’, q”, 8) + . . .t Kg, = v;Kh (to, q”, 0’) + . . . 

The equation for 9 then assumes the form 
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N&O&“&” + N,“%l~,~ -tG (l-9 = 0 (=j.5) 

where G is the left-hand side of Eq. (5.2). Equation (5.5) is also useful in the calcu- 
lation of nonlinear gas flows. Thus for R = U = 1, E = x, 7 = y, and 6 = t 
(NE = K:TI = 0) we obtain the transonic equation for unstable fiows [16,17-J, and 
for U = 0, R = 1, E = (z - a& i a& rl = y /a& and II, = t$* (E, q, 
In t) we have the equation for short waves Eli, 121, 

It is interesting that Eq. (5.5) includes the linear equation for cpr when NE = 
iv8 = K+,, = K,,s = L, = Le = OandR = 1. The condition Ne =I 0 means 
that 8 = con&, as well as that F; = con& are characteristics of the equation for 

‘PI . Examples of such variables are 

Ei = (-u f a)t + z, ?jl = (- u f ap + x + y, ex = 9 f 
at (w = 0); g, = (-u f a)t + 5, q:! = y, 92 = x + (-u T at) 

For these variables the propagation of perturbations from a point source in an un- 
perturbed gas takes place over a circle [I?, 183, 

Equation (5,5) may be used for calculating the essentially two-dimensional flows 
(the term $91a,,~ is present) in the neighborhood of the interaction point of two weak 
shock waves (e.g., & = &go (tf, i3) and Or = 8 (r, q”)) or in the neighberhood 
of the interaction point of a shock wave (e. g., 5% = $,= ($, 0)) with a wall (e. g., 

r12 = Y = l/ho (E”, w. 
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