UDC 533, 6. 001

ASYMPTOTIC INVESTIGATION OF NONLINEAR EFFECTS IN THE
PROBLEM OF UNSTEADY SUPERSONIC FLOW PAST A PROFILE

PMM Vol. 43, No.1, 1979, pp.30-37
P. A, VEL'MISOV
(Ul'ianovsk)
{Received September 9, 1977)

It is shown that the problem of unsteady flow of a supersonic gas stream past a
slender profile has, under certain conditions, an irregular expansion in the ne-
ighborhood of the bow shock wave, A nonlinear equation which defines the
flow in the irregularity region is obtained, and the linear and nonlinear expan-
sions are matched, Equations of general form are derived for the flow in the
neighborhood of weak shock waves which in the linear theory coincide with
characteristics.

1. We consider in linear formulation the class of problems of supersonic flow in
which the weakly perturbed flow region is separated from that of uniform flow by the
surface £ =2 — Py =0 (B= (M>*—1)/1, M = Ua~'; M and a are, res-
pectively, the Mach number and the speed of sound in the uniform stream. Such flows
occur, for instance, in supersonic flows past an unsteady point source of small perturb-
ations, in the supersonic flow around a pointed slender profile, or some insignificant
convexity on a plane or cylindrical surface (see, e.g., [1 —5] dealing with unsteady
supersonic flows and provide surveys of these problems).

We specify the linear expansion of the velocity potential in the form

Oz, y, t) =Uz+ s9: (&, y, 1) + 8, (§ 4, 8) + ... (1.1
E=z— By

where @, z, y, and ¢ are respectively, the dimensionless velocity potential, the
coordinates, and time, normalized with respect to a,%¢,, a,t,, and t,, where
a, is the speed of sound in the sonic stream,
Conditions of the problem are assumed to be such that in the neighborhood of the
perturbed region boundary E = ( the potential @, is of the form

pr=Ey "IN+ T, )g@) + ..., g 1"E (1.2)

The values of mand n must besuchthat ¢, (§E =0)=0. Far E (y,1)
from the linear equation for ¢; we then have

2UE,—}—a213(25y+-yﬂE)=O, E=FE,(m)y 2, n=7—%’t (1.3)

where E, (1) is an arbitrary function, and ® =0 and ® = 1 for plane and
axisymmetric flows, respectively.

Expansion (1, 2) corresponds, for example, to flow over a surface ‘for which in
the linear theory for small Z (at the profile nose & = y = 0) is defined by

y =0y, t) =6h(t)yz"In"z + £k, (t) g (2) + ... (1.4)
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The external flow past a cylindrical surface y = y* + Oy, (z, t), y* = const
== 0 may be considered as an example of axisymmetric flows. In that case the vari-
able § is to be specified in the form & = z — B (y — y*). It follows from (1. 4) that
the profile is pointed when m =1, n < Oyor m >> 1. These values are used be-
low. It follows from (1,2) that when m =1 and n = 0 (the angle & between the
tangent to the profile and the z -axis at z = 0 is nonzero), then in linear formulat-
ion § = 0 the shock wave intensity is AP ~ §: when m = 1 and n<<O0 ,or
m > 1 (& = 0), the potential and velocities at § = 0 are continuous and § = 0
is a characteristic that represent the surface of weak discontinuity,
Note that for certain m, n, and g (§) we have @t (§ = 0) = co. If on the
characteristic £ = 0 we have @ = Uz, then the exact equation of the potential
D (§, y, t) yields for the determination of z (y, t) = Dy (£ = 0) the nonlinear
equation

203, + a3 (22, + —-2) + (x + HUM*2 = 0 (L5

It follows from (1. 5) that @ (§ = 0) = Uz + z E? and that the acceleration
Dy (E = 0) is either a quantity of order unity (z =z (y, ) 5= 0) or is equalzero
(z = 0). However the linear theory does not provide the possibility of satisfying the

condition of finiteness of acceleration (in the linear theory Mgx = Sy ~ § <L 1)
and this is the cause of Pz (§ = 0) becoming co in such cases, The linear theory
assumes acceleration @y to be small and defines Qe (§ = 0) by the linear equat-
ion (1, 5) without the last term, Similar investigations were carried out in {6] for con-
ical steady flows.

The two-term linear expansion (external in [7 —9) in the neighborhood of § = 0

for m >>1or m = 1and »n<<O0(x =0). is of the form

O =Ux+3[E(m)y /" In"E+...] +
8 {[ Ev () — B Bt (myye-or/2] yorpm2 g 4
p=(x+1) M2 — o) (ap)?

(1.6)

where £ — 0, y and ¢ ~ 1, and valuesof M are finite and not close to unity.
For m = 1and n = O(a 5= 0) we have

O=Uz+8[E,mye2 E4+..1+8{V+yeg B +...} @D

where £, (1) is an arbitrary function; v (¥, t) and ¥ (y, ) are some functions of
variables ¥ and f. In(1.7) the term containing v is to be discarded when 2L
g < t; when g < E? the term containing ¥ is to be eliminated, and when ¢
~ &2 both terms are to be retrained, Expansions (1.6) and (1.7) are irregular when
SE™-2n"t ~ 1 (if n =0 thenfor § ~ §/-m)) andfor B L g, & ~
5g’ (%), respectively. Specifically, irregularity occurs for those m, n, and g (&)
for which @tz (§ = 0) = oo.
We have the irregularity of linear expansion in the neighborhood of shock waves
(characteristics) where values of parameters are small but their gradients are finite
6 —~ 14].

2, We specify the expansion (intemal in [7 —9] that defines the flow in the
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neighborhood of a shock wave (characteristic) by
O=Uz+epE,yt)+..., E=¢l°% e (2.1
Assuming that y and t ~ 1, and 1 << M << oo, we obtain for P the equation

20 gt + a*B 29y + —;’- i) + (¢ + 1) UMHppotpyers = 0 (2.2)
which for the determination of @y: (£ = 0) yields exactly Eq, (1.5) with@g ~ 1.
Equation (2, 2) was considered in [7] for stable plane flows,
At the shock front the conditions are of the form

1 JE° 9g°
T UM b+ 98 = 20 + 20 T 2.9

Y=9* for =81

where }* relates to the flow ahead of the shock wave, and when ¥* == ¢, (2.3)is
the characteristic equation,

The impenetrability condition along the profile ¥ = ey, (§, ) for @ = 0 s
of the form Udy, /9 > = —pPyPt° at y = 0. For @ = 1 the profile is to be
specified in the form y = y* + e? y,, y* = const 7 0.

The general solution of Eq. (2.2)

B = puOy 4 f(uoymlz’ n)’ u° = Pee, d)§ =U + eu° (2.4)
Along the characteristics of Eq. (2.2) the relation
af ou® ou® @ o
(py+3p—y‘°/2) (2a% % +2U~5-t—+-—y—a2ﬁu)==0 (2.5)

where u’ = u° (y, t), is the value of u° on the characteristic and p = u’y“/?,
is valid, Then along the characteristic £° = pu, (n)y®-9/2 4 f [u, (n), nl vel-
ocity u° is determined by (1,3) and u° = uy (M)y~%/* (uy (n) is determined by
the condition at the profile). Equation py - (9f / dp)y®/?2 = O in conjunction
with (2.4) determines the envelope of the indicated set of characteristics, as well as
that of the set of curves (2.4), where u° isa parameter which is constant along each
of these curves, Note that equation 1n = ( determines the coordinate of the inter-
section point of the straight line & = O with the boundary of the sound momentum
(x — Uty + y? = a®2

3. Passing in the linear equation for @, to the intemnal variable E° and in Eq.
(2. 2) to the external variable £, we obtain for &€ — 0 the same limit equation,
which indicates the possibility of joining expansions (1. 1) and (1.2). Let us amend
the linear theory in the neighborhood of § = ( with @ = ( (see (1.6)) and n = 0.
In this case 1 << m <C 2, since the irregularity region § ~ /@™ £ 1 (it is
interesting that when §° — oo, solution of (2. 2) of the form (1. 2) exists only when
m<<2or m=2 and n<0). Joining the one-term expansions (1. 6), (2. 1),
and (2.4), we obtain g = 1™ apd ™! = u’m-1E,~1y9/2, Let us consider the
particular case in which f is a second power polynomial in powers of u°

Y= AE+ By +CE+ D, Cye/2=Cy— _g. pAg2y2-0)/2 (3.1)
A= Agy9/2, B = B, — pCoy>-)/2 1 % p2Ag2yr-o
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where D (¥, ?), A, (n), Bo(n), and C, () are ambitrary functions, For (3.1)
Dyt (§ = 0) = 3/,AB-"". Joining with (1.6) yields & = 82, m = 3/,, Ay =
Eoyand Cy = E;. The condition of impenetrability implies that the equation of
the profile for (3. 1) for small Z is of the form (@ = 0)

UBly=—Y g Ao (t*)2: — eC, () z —3eBAg?® .., aBM Y= —¢*

Using (2..3) it can be easily shown that solution (3. 1) is suitable for defining the
flow in which the perturbed region is bounded upstream by the characteristic §° =

4/ M 24 -2 _ B_{c
19w <1 Lrp \w

nlavos o

= 0, 1) along which it is not discontinucus, or by the shock wave
. 1 -, 3 .2
FP=f*=—B+ '§—Co2Ao :+ '7}'?01)?/(2"")/2 - ﬁ-ponzyH’, ©==0,1

If the characteristic (shock wave) passes through point z = y = 0, then By =
4oCo?Ao™® (Bo = Y/4C¢?4,72),and its intensity is
‘émi;‘“‘“‘“” D) = —epp (B =E*) =e (‘%{Z; pAYo — ~g“foy“‘“ ?)
If the shock wave originates at the profile nose, then C, < 0 (otherwise AP (y
=0)<0). If C; = 0, the shock wave intensity at y = 0 (0 = 0) is zero,
The compression shock at the profile is obtained for @ = 1 by setting in the express~
ionfor APy = y* =£.0,

In linear formulation the shock wave intensity AP ~ 0. In the considered part-
icularcases AP ~ e =8/t L1 <m<2) for n=0. Henceinsuch
formulation the shock wave of such weak intensity degenerates into a charactenitic,
i.e,, a surface of weak discontinuity.

A similar investigation of the plane problem of steady supersonic flow past a prof-
ile for &« = n = 0 was carmded out in [14],

4, In conformity with [13] Eq. (2.2) can be extended to the case of a viscousheat
conducting gas. Specifying P = P,, p = po, Pr = Pr,, and Re = Reee~? for
the uniform flow of perfect gas we obtain equation

G (p) = Mpgopope, 1 = M? (Reopo)*U [1 4 (x — 1) Pro7Y] (4.1
where G () represents the left-hand side of Eq, (2.2). Substituting in it
2l

P = ——Um—:l—)‘M—zlnH

this equation reduces for ® = 0 to a linear one. The solution
° =1 () — 25 (M th[s(M)E — pyr (M) s(A) + 50 (W) (4.2)

h=2Un, b= (x+ HUM?

for (4. 1) of the form derived in [15] defines thestructure of 2 plane shock wave. In
this equation 7, s, and 8, are arbitrary functions. Selecting for s 2 0r = F2I
b-1s we find that u° — O when & —» — 00 and u° — 2r (A) <C O when §° — co.
Joining (2.1) and (4.2) with (1,7) we obtain § = ¢ and Ey (n) = 2r (M.

For £° — 00 asymptotics of (4. 1) is of the form (1.2), if m <2 or m = 2
and n<<0 (form<2 orm =2 and n<<0 function E is determined, as in
the case of (2.2), by (1.3)). This show the possibility of joining expansion (2.1) with
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(1.6) in the case of a viscous gas.
The solution of (2. 2), (4.1)

2
\p = 2 wk (yv t) (go)k
k=0
can be used for determining perfect gas flows with a shock wave or a weak discontinu-
ity.
All above results are valid for the trajling edge shock wave which is followed by
a uniform flow. In this case it is necessary to substitute in (1.2) (L — &) (L is the
chord length of the profile whose end pointisat y = 0, z = L) for ¢, and in
formulas in Sects.2—4 take £° to mean the variable £° = (L — f)e~!. Al
formulas, including those for viscous gas, remain unaltered,

5. Letus derive the nonlinear equation of a general form for defining the flow in
the neighborhood of weak shock waves which in the linear theory coincide with charac-
teristics. We introduce in the exact equation for @ (z, y, t) new variables §, 7,
and @ whichdependon z, y, and f, and seek a solution of the obtained equation
for flows that differ only slightly from a uniformstream of the form ( R is an arbitrary
function)

O=Uz+epE,n,0RE&y,t)+..., §=¢ef, 1 (5.1)

Let us assume that after passing to variables §, 1, znd 8 all coefficients in the
equation for (D expressed in terms of variables £°, n,and 6 are of order unity (this
obtains, for example, for variables § = z; — f; (Zy, Zg), N = fo (%3, Ty), and

0 = f3 (T3, z3)). Retaining leading terms we obtain

2K£'ﬂ¢§°n + 2ng‘p§°e + P (Lgo + 2R,K ; R — (5.2
(x + 1) ROMEO‘PEO 1P§o§o = 0

where the small circle in the subscript denotes leading terms of expansions of functions
My, Ny, Ko, Kroy K¢ry Ly, and R in €, where

My =45+ UL, Ly =6 (bt B+ &) —
Ett - 2U§xt - Uzgxx
Kin = a® Balle + Eyy) — & + UE) (0 + Un)
The nontriviality condition
Ny=a’@E 4+ 8" — 6+ Uk =0 (5.3)
must then be satisfied. In these formulas Ky and Kzr are obtained by the substit-
ution in the expression for Kzy of functions 6 and R , respectively, for function
n ; Lg is obtained by substituting in the equation for function ¢, & for function
@1 . The subscripts at M/, K, L, and N are markers, while in the remaining cases
the letter subscript indicates a derivative, Function R can be used for simplifying
(5.2). Equation (5,3) for function § (2, y, t) implies that E = const is a charact-
eristic line (surface) of the linear equation for ¢, (L, = (). Functions y and 6
are arbitrary and can be selected so as to facilitate the solution of the problem (provid-
ed the condition for the order of coefficients is satisfied).
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Condition (5,3) may be widened., To obtain a nontrivial equation for it is
sufficient to specify that function § (z, y, f) determined by the equation N; = F
(§, z, y, t), in which function F is such that

F [e8°, z (8% m, 0), y (&% m, 0), ¢ (et°, m, 0)] = &F,.(8°, m, 0)
i.e, that N: ~ ¢ but all remaining coefficients in the equation for @ are of order
unity, Then the equation for ¥ assumes the form Fypero -+ G () = 0 in which
G ({) is the left-hand side of Eq. (5.2).
The approximate conditions for (5, 2) at the shock wave &° = E° (1, 0) are of
the form

. O o Gg° TN
K 5 + Koo Gy + 50 MW+ 900 =0, 9=yr (50

¥ R=1,§=z— Py, n =y, and 0 = ¢, then from (5.2) and (5.4) we
obtain (2, 2) and (2,3). Setting

R=1, t=z+4@B—y¥)" n=y, 0=t U=0, a®=(x+1)2

we obtain the equation which defines the flow in the neighborhood of the sound pulse
(or of a weak shock wave) ¢ = ( propagating through the quiescent or slightly pertur-
bed gas. It can be shown that in problems of propagation of a sound puise or a weak
shock wave a linear expansion of the form (1.6) for § = z 4 (a%?* — y?)' also has
regions of irregularity. For instance, for n = 0 it is irregular when § ~ §1/¢=™ |

m < 2. Representing the general solution of (5.2) in the form §° = §° (u°, y, ?)
it is possible to join the linear and nonlinear expansions. For plane self-similar flows
of the form @ = t®* (8 /¢, y/ t) wehave m =3/, (n = 0). Equation (5. 2) for
E =z (a% — y*)', n=y,and O = ¢ is an analog of the equation for a per-
fect gas [13] that is obtained from (5. 2) for

E=at —p,, n=z=p,co80, 0=y=p,sinb,
R=1{, U=90
it is also an analog of the equation in [10], differing from thete only by the form of

variables,
We introduce now the expansion

O =Uz+ e (@E n0R@ y, ) +..., E=¢ef
n=Ver, e<t
Retaining the previous conditions for the coefficients in the equation for O, we
obtain Eq. (5.2) and condition (5. 4) in which it is necessary to substitute
° 1 (OE°\2 & o
N, — - (g5) N
for their respective first terms.
In this case besides the condition Nz = 0 the nontriviality condition Kgn =0
must be satisfied, These conditions may be widened by specifying that functions &,
M, and § ave tobe such that
Ny =eN (@, 1% )+ ..o Kgo = VeKin (@, 07 89+ ...
The equation for ¥ then assumes the form
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NePege + NoPooge +G (9) = 0 (5.5)
where ( is the left-hand side of Eq, (5.2). Equation (5, 5) is also useful in the calcu-
lation of nonlinear gas flows, Thusfor R = U = 1, E =z, =y, and 8 = ¢
(Mg == Kiy = 0) we obtain the transonic equation for unstable flows {16,17], and
foo U=0, R=1,E = (z—apt)/apt, n=y/aet, and ¢ = ty, (¢, n,
In t) we have the equation for short waves [11, 12],

It is interesting that Eq, (5. 5) includes the linear equation for @1 when Ny =
Ng = Ky = Kyg = Ly = Lg = Qand R = 1.The condition Ny = () means
that 8 = const, as well as that § = const are characteristics of the equation for
@1 . Examples of such variables are

L=(-Uzxat+z, n=(-Uzxat+z+y 6= y=*
at (0 =0); & =(-Uxa)t+z, o=y, O=2z+(—UFai)

For these variables the propagation of perturbations from a point source in an un-
perturbed gas takes place over a circle [17,18],

Equation (5, 5) may be used for calculating the essentially two-dimensional flows
(the term Py is present) in the neighborhood of the interaction point of two weak
shock waves (e.g., &, = g&° (°, 8) and Op = 0 (£°, n°)) orin the neighbe:hood
of the interaction point of a shock wave (e.g., &, = gf° (n°, 8)) with a wall (e, g.,

T =y =Ver (&, 0).
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